РОССИЙСКАЯ ФЕДЕРАЦИЯ

Иркутская область город Усть-Илимск Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа №2»

666671 г.Усть-Илимск, Иркутская обл., ул. Солнечная — 1 E-mail: school2ui@mail.ru Телефон (факс) № (39535) 7-42-95

«РАССМОТРЕНО»
НА ЗАСЕДАНИИ НМС
ПРОТОКОЛ № <u>1</u>
ОТ «04»<u>сентября</u> 20<u>24</u>г.
______ РУКОВОДИТЕЛЬ НМС

«У	ТВЕРЖД	(АЮ»	
ДИ	PEKTOP	МБОУ «С	ОШ № 2»
, ,			
«	>>		Γ

РАБОЧАЯ ПРОГРАММА МЕТОДЫ РЕШЕНИЯ ФИЗИЧЕСКИХ ЗАДАЧ

УЧИТЕЛЬ Суворова Марина Дмитриевна

Пояснительная записка

Научить учащихся решать физические задачи - одна из сложнейших педагогических проблем. Решение и анализ задачи позволяют понять и запомнить основные законы и формулы физики, создают представление об их характерных особенностях и границах применение. Задачи развивают навык в использовании общих законов материального мира для решения конкретных вопросов, имеющих практическое и познавательное значение. Умение решать задачи является лучшим критерием оценки глубины изучения программного материала и его усвоения.

Данный курс предназначен для учащихся 11 класса, изучающих физику на базовом уровне, но интересующихся физикой и планирующих сдавать экзамен по предмету. Программа курса учитывает цели обучения физике учащихся средней и старшей школы. Изучаемый материал предполагает практическую деятельность учащихся на решение задач и вопросы классической механики, молекулярной физики, электродинамики, оптики и квантовой физики. Курс «Практикум по решению задач по физике» рассчитан на 34 часа, 1час в неделю. Программа разработана с таким расчётом, чтобы учащиеся получили достаточно глубокие практические навыки по решению задач.

Цель данного курса углубить и систематизировать знания учащихся 11 классов по физике путем решения разнообразных задач и способствовать их профессиональному определению.

Задачи курса:

- углубление и систематизация знаний учащихся;
- усвоение учащимися общих алгоритмов решения задач;
- овладение основными методами решения задач.

Планируемые результаты:

Личностные

- формирование познавательных интересов, интеллектуальных и творческих способностей учащихся;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки, отношение к физике как к элементу общечеловеческой культуры;
 - самостоятельность в приобретении новых знаний и практических умений;
 - мотивация образовательной деятельности на основе личностно ориентированного подхода;
- сформированность мировоззрения, соответствующего современному уровню развития науки; осознание значимости науки, владения достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки; заинтересованность в научных знаниях об устройстве мира и общества; готовность к научно-техническому творчеству
 - чувство гордости за российскую физическую науку, гуманизм;

- положительное отношение к труду, целеустремленность;
- экологическая культура, бережное отношение к родной земле, природным богатствам России и мира, понимание ответственности за состояние природных ресурсов и разумное природоиспользование.

Метапредметные

- овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;
- умение свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся критериев, различая результат и способы действий;
 - в ходе представления проекта давать оценку его результатам;
 - самостоятельно сознавать причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;
 - уметь оценить степень успешности своей индивидуальной образовательной деятельности;
- понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез; разработки теоретических моделей процессов или явлений;
- использование для познания окружающего мира различных естественнонаучных методов: наблюдение, измерение, эксперимент, моделирование;
 - овладение адекватными способами решения теоретических и экспериментальных задач;
- приобретение опыта выдвижения гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез.
- приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием различных источников, и новых информационных технологий для решения поставленных задач;
- формирование умений воспринимать, перерабатывать и предъявлять информацию в словесной, образной, символической формах, анализировать и перерабатывать полученную информацию в соответствии с поставленными задачами, выделять основное содержание прочитанного текста, находить в нем ответы на поставленные вопросы и излагать его;
- развитие монологической и диалогической речи, умения выражать свои мысли и способности выслушивать собеседника, понимать его точку зрения, признавать право другого человека на иное мнение;
 - освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;
- формирование умений работать в группе с выполнением различных социальных ролей, представлять и отстаивать свои взгляды и убеждения, вести дискуссию.
 - использование для решения познавательных и коммуникативных задач различные источники информации.

- осуществлять деловую коммуникацию, как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за ее пределами);
- при осуществлении групповой работы быть как руководителем, так и членом проектной команды в разных ролях (генератором идей, критиком, исполнителем, презентующим и т.д.);
- развернуто, логично и точно излагать свою точку зрения с использование адекватных (устных и письменных) языковых средств;
- представлять публично результаты индивидуальной и групповой деятельности, как перед знакомой, так и перед незнакомой аудиторией;

Предметные

На курсе научатся:

- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;
- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- характеризовать системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
 - выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
 - самостоятельно планировать и проводить физические эксперименты;
- характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические, и роль физики в решении этих проблем;
- решать практико-ориентированные качественные и расчетные физические задачи с выбором физической модели, используя несколько физических законов или формул, связывающих известные физические величины, в контексте межпредметных связей;
 - объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;
- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель, разрешать проблему как на основе имеющихся знаний, так и при помощи методов оценки;
- демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;
 - демонстрировать на примерах взаимосвязь между физикой и другими естественными науками;
- устанавливать взаимосвязь естественно-научных явлений и применять основные физические модели для их описания и объяснения;

- использовать информацию физического содержания при решении учебных, практических, проектных и исследовательских задач, интегрируя информацию из различных источников и критически ее оценивая;
- различать и уметь использовать в учебно-исследовательской деятельности методы научного познания (наблюдение, описание, измерение, эксперимент, выдвижение гипотезы, моделирование и др.) и формы научного познания (факты, законы, теории), демонстрируя на примерах их роль и место в научном познании;
- проводить прямые и косвенные изменения физических величин, выбирая измерительные приборы с учетом необходимой точности измерений, планировать ход измерений, получать значение измеряемой величины и оценивать относительную погрешность по заданным формулам;
- проводить исследования зависимостей между физическими величинами: проводить измерения и определять на основе исследования значение параметров, характеризующих данную зависимость между величинами, и делать вывод с учетом погрешности измерений;
- использовать для описания характера протекания физических процессов физические величины и демонстрировать взаимосвязь между ними;
- использовать для описания характера протекания физических процессов физические законы с учетом границ их применимости;
- решать качественные задачи (в том числе и межпредметного характера): используя модели, физические величины и законы, выстраивать логически верную цепочку объяснения (доказательства) предложенного в задаче процесса (явления);
- решать расчетные задачи с явно заданной физической моделью: на основе анализа условия задачи выделять физическую модель, находить физические величины и законы, необходимые и достаточные для ее решения, проводить расчеты и проверять полученный результат;
 - учитывать границы применения изученных физических моделей при решении физических и межпредметных задач;
- использовать информацию и применять знания о принципах работы и основных характеристикахизученных машин, приборов и других технических устройств для решения практических, учебно-исследовательских и проектных задач;
- использовать знания о физических объектах и процессах в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде, для принятия решений в повседневной жизни.

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

№	Наименование темы по программе	Характеристика деятельности учащихся	Кол-во часов	Кодификатор
ВВЕДІ	ЕНИЕ (2часа)			
1.	Физическая задача. Классификация задач.	Знакомятся со способами классификаций, какие виды есть у задач, какими методами решают задачи.	1	
2.	Общие требования при решении задач. Этапы решения задач. Анализ решения задач.	Знакомятся с методиками решения задач, этапами, требованиями к постановке и решению учебной физической задачи.	1	
1. ЭЛЕ	КТРОДИНАМИКА (7 часов)			
3.	Направление тока и направление линий его магнитного поля. Решение задач с правилом буравчика.	Изображают магнитное поле с помощью магнитных линий. Анализируют зависимость направления линий магнитного поля от направления тока.	1	3.3.1
4.	Решение задач на определение силы Ампера.	Умеют применять правило «левой руки». Понимать смысл закона Ампера. Вспомнить электроизмерительные приборы.	1	3.3.2, 3.3.3
5.	Решение задач на определение силы Лоренца.	Понимают действие магнитного поля на движущийся заряд. Умеют определять силу Лоренца. Умеют применять правило «левой руки».	1	3.3.4
6.	Применение правила Ленца в задачах.	Наблюдают и объясняют взаимодействие полосового магнита и алюминиевого кольца. Определяют направление индукционного тока по правилу Ленца.	1	3.4.4, 3.4.5
7.	Закон электромагнитной индукции.	Объясняют устройство и принцип действия генератора постоянного тока. Решают задачи.	1	3.4.1, 3.4.2
8.	Самоиндукция. Индуктивность.	Знают и разбираются в понятиях индуктивность и самоиндукция. Анализируют явление самоиндукции, сравнивают схемы.	1	3.4.3
9.	Решение тренировочного варианта. КИМ	Проверка уровня знаний по итогам пройденных тем. Уметь применять теоретические знания в практических умениях.	1	

2. MEX	ХАНИКА (10 часов)			
10.	Графический и координатный методы решения кинематических задач.	Строят, читают и анализируют графики зависимости скорости и ускорения от времени. Решение графических разноуровневых задач.	1	1.1.1-1.5.5
11.	Решение задач на сложение скоростей.	Вычисляют перемещение при неравномерном движении, используя графический и аналитический способ. Решают разноуровневые задачи	1	
12.	Решение задач на движение тел по окружности.	Вычисляют физические величины, характеризующие движение и взаимодействие тел. Применяют знания к решению задач. Решают разноуровневые задачи	1	1.1.5
13.	Решение задач на законы Ньютона по алгоритму.	Классификация систем отсчета, решение задач по аналогии. Вычисляют ускорение тела при взаимодействии.	1	1.8 -1.10
14.	Решение задач на движение связанных тел.	Знают и умеют вычислять физические величины, характеризующие движение и взаимодействие тел. Решают разноуровневые задачи.	1	
15.	Движение в поле гравитации и решение астрономических задач. Космические скорости и их вычисление.	Применяют полученные знания при решении астрономических задач. Алгоритм решения задач.	1	1.1.13
16.	Решение задач на определение характеристик равновесия физической системы по алгоритму.	Применяют полученные знания при решении физических задач.	1	
17.	Решение задач на закон сохранения и превращения энергии.	Применяют полученные знания для решения задач. Понимают смысл закона сохранения энергии. Умеют объяснять изменение энергии при движении тел под действием внешних сил.	1	
18.	Динамический и энергетический методы решение задач на определение работы и мощности.	Применяют полученные знания для решения задач на вычисление механической работы и мощности, нахождение механической энергии.	1	

19.	Решение тренировочного варианта. КИМ	Проверка уровня знаний по итогам пройденных тем. Уметь применять теоретические знания в практических умениях.	1	
3. MOJ	ІЕКУЛЯРНАЯ ФИЗИКА (4 часа	n)		
20.	Качественные задачи на основные положения МКТ, уравнение Менделеева- Клапейрона.	Применяют основные положения молекулярно-кинетической теории. Знают о размерах и числе молекул в единице вещества. Решают качественные задачи.	1	2.1.1-2.1.12
21.	Задачи на описание поведения идеального газа. Графические задачи.	Применяют полученные знания при решении физических задач. Умеют различать графики.	1	
22.	Давление и температура с точки зрения молекулярно- кинетической теории. Основное уравнение кинетической теории газов.	Умеют определять постоянную Больцмана. Применяют полученные знания при решении физических задач (количественных, графических, экспериментальных).	1	2.1.12
23.	Влажность воздуха. Задачи на свойства паров.	Влажность воздуха (принцип устройства и работы гигрометра). Применять полученные знания при решении физических задач.	1	2.1.11, 2.1.13
24.	Решение тренировочного варианта. КИМ	Проверка уровня знаний по итогам пройденных тем. Уметь применять теоретические знания в практических умениях.	1	
4. ОПТ	ТИКА (3 часа)			
25.	Задачи по геометрической оптике: отражение в зеркалах оптические схемы, преломление света в призмах, , оптические схемы.	Знать/понимать смысл законов отражения и преломления света, смысл явления полного отражения; уметь определять показатель преломления. Различать геометрическую и волновую оптику.	1	3.6.1- 3.6.2
26.		Уметь определять, собирающие или рассеивающие является эта линза, действительным или мнимым является изображение.	1	
27.	Задачи на описание различных	Понимать явление дисперсии, интерференции и дифракция света.	1	3.6.10, 3.6.11,

	свойств электромагнитных волн: интерференция.			3.6.12
5. KBA	НТОВАЯ ФИЗИКА (6 часов)			
28.	Методы решения задач по теме «Фотоэффект».	Умеют объяснять опыты Герца, применяют законы фотоэффекта. Решают качественные задачи.	1	5.1.3, 5.1.4
29.	Решение задач различной степени сложности по теме «Фотоны».	Применяют полученные знания при решении физических задач с применением уравнений, характеризующих основные свойства фотонов.	1	5.1.2
30.	Графические задачи на квантовые постулаты Бора.	Вспоминают квантовые постулаты Бора. Умеют использовать постулаты Бора для объяснения механизма испускания света атомами.	1	5.2.1, 5.2.2, 5.2.4
31.	Комбинированные задачи по теме «Квантовая физика».	Решение разнообразных задач: методологических, количественных, качественных.	1	
32.	Решение задач на тему «Радиоактивные превращения. Закон радиоактивного распада. Период полураспада».	Описывают действие радиоактивных излучений различных типов на живой организм, объяснять возможность использования радиоактивного излучения в научных исследованиях и на практике	1	5.1.2
33.	Расчетные задачи на тему «Энергетический выход ядерных реакций».	Понимают условия протекания и механизм ядерных реакций. Применяют полученные знания для решения задач.	1	5.3.6
34.	Решение тренировочного варианта. КИМ	Проверка уровня знаний по итогам пройденных тем. Уметь применять теоретические знания в практических умениях.	1	